Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Nanoscale Materials for Human Spaceflight Applications: Regenerable Carbon Dioxide Removal Using Single-wall Carbon Nanotubes

2006-07-17
2006-01-2195
The challenges of missions to the Moon and Mars presents NASA with the need for more advanced life support systems, including better technologies for CO2 removal in spacecraft atmospheres and extravehicular mobility units (EMU). Amine-coated single wall carbon nanotubes (SWCNT) have been proposed as a potential solution because of their high surface area and thermal conductivity. Initial research demonstrated the need for functionalization of SWCNT to obtain optimal adherence of the amine to the SWCNT support phase [1]. Recent efforts focus on the development of new methods to chemically bond amines to SWCNT. Synthesis and characterization methods for these materials are discussed and some preliminary materials characterization data are presented. The CO2 adsorption capacity for several versions of SWCNT supported amine-based CO2 scrubber materials is also determined.
Technical Paper

Evaluation of the Risk of Circulating Microbubbles Under Simulated Extravehicular Activities After Bed Rest

1993-07-01
932220
This ground-based study compared the risk of microbubbles during decompression under simulated space extravehicular activities (EVA) after three days of six-degree head-down bed rest with three days of ambulatory control. Test subjects were exposed to a pressure of 44.8 kPa (6.5 psi), breathed 100% oxygen, and exercised at reduced pressure either in the supine (during experimental) or upright (control) position. Circulating microbubbles were monitored by a precordial Doppler ultrasound device, and were found in 52% (12/23) of control and 26% (6/23) of experimental exposures. Survival analysis using Cox proportional hazards regression showed that there was 0.22 times (95% confidence interval=0.07-0.68) reduction in the risk of high grade microbubbles after bed rest, compared to controls (p=0.004). This finding is of importance in evaluating the risk of DCS during EVA.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Design of a Water Electrolysis Flight Experiment

1993-07-01
932087
Supply of oxygen (O2) and hydrogen (H2) by electrolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missions. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. Life Systems, Inc., in conjunction with NASA, has been developing an alkaline-based Static Feed Electrolyzer (SFE). During the development of the water electrolysis technology over the past 23 years, an extensive engineering and scientific data base has been assembled.
Technical Paper

Characterization of an Improved Solid Amine for a Regenerative CO2 Removal System

1993-07-01
932292
The Shuttle Orbiter humidity control and carbon dioxide removal system for extended duration missions presently uses a solid amine called HS-C. This August, on board STS-62, a new solid amine called HS-C+ will be used. HS-C+ uses the same amine and the substrate material, but a different preparation process. Forty-seven breakthrough tests have been conducted to characterize the performance of HS-C+. CO2 partial pressure, bed temperature, and H2O partial pressure were varied. Eleven HS-C breakthrough tests were also run to provide a direct comparison. Under all conditions tested, HS-C+ outperformed HS-C. Both materials adsorb all CO2 and H2O available at the start of a test when the beds are fully desorbed. As the bed becomes partially loaded, the CO2 and H2O adsorption rates decrease rapidly. HS-C+ continues adsorbing all CO2 and H2O available for a longer time. Greater surface area on HS-C+ may cause the improved performance.
Technical Paper

Operation of a Breadboard Liquid-Sorbent/Membrane-Contactor System for Removing Carbon Dioxide and Water Vapor from Air

1992-07-01
921321
Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid- sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid- water stream.
Technical Paper

Development of the Advanced Life Support Systems Integration Research Facility at NASA's Johnson Space Center

1992-07-01
921317
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center (JSC). The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Performance Evaluation of Candidate Space Suit Elements for the Next Generation Orbital EMU

1992-07-01
921344
The projections of increased Extravehicular Activity (EVA) operations for the Space Station Freedom (SSF) resulted in the development of advanced space suit technologies to increase EVA efficiency. To eliminate the overhead of denitrogenation, candidate higher-operating pressure suit technologies were developed. The AX-5 all metallic, multi-bearing technologies were developed at the Ames Research Center, and the Mk. III fabric and metallic technologies were developed at the Johnson Space Center. Following initial technology development, extensive tests and analyses were performed to evaluate all aspects of candidate technology performance. The current Space Shuttle space suit technologies were used as a baseline for evaluating those of the AX-5 and Mk. III. Tests included manned evaluations in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft.
Technical Paper

Program Development for Exercise Countermeasures

1992-07-01
921140
Research indicates that adaptation to a microgravity environment includes physiological changes to the cardiovascular-respiratory, musculoskeletal, and neurosensory systems. Many of these alterations emerge even during space flights of short duration. Therefore, the advancement of manned space flight from Shuttle to Space Station Freedom (SSF) requires development of effective methods for augmenting the ability of humans to maintain functional performance. Thus, it is the goal of NASA to minimize the consequences of microgravity-induced deconditioning to provide optimal in-flight performance (intra- and extra-vehicular activities), suitable return to a pedestrian environment, and nominal physiological postflight recovery for an expeditious return-to-flight physical status.
Technical Paper

Design of a Shuttle Air and Water Prefilter for Reduced Gravity Operation

1992-07-01
921161
The Space Shuttle humidity separator prefilter was developed to remove debris from the air/water stream that flows from the cabin condensing heat exchanger to the humidity separator. Debris in this flow stream has caused humidity separator pitot tube clogging and subsequent water carryover on several Shuttle flights. The first design concept of the prefilter was flown on STS-40 in June, 1991. The prefilter was installed on-orbit. Video footage of its operation revealed that the prefilter did not pass water at a constant rate, resulting in a tendency to slug the humidity separator. The results from this flight test have resulted in a complete redesign of the prefilter. In this paper the first prefilter design is described, the flight results from STS-40 are examined, and the on-orbit performance of the prefilter is explained. The redesigned prefilter is described with emphasis on the features that should allow successful reduced gravity operation.
Technical Paper

A Study to Explore Locomotion Patterns in Partial Gravity Environments

1992-07-01
921157
The primary objectives of this study were to determine the factors that affect stability during locomotion in both lunar and martian gravity environments and to determine the criteria needed to enhance stability and traction. This study tested the effects of changing the speed of locomotion and the pattern of locomotion under three gravity conditions. The results showed that as the gravity level decreased, the amount of vertical and horizontal forces dropped significantly. The results also showed that there are some similarities across gravity levels with regard to changing the speed as well as the pattern of locomotion. In general, an increase in the speed resulted in an increase in the vertical and the horizontal forces. A change in the pattern of locomotion showed that even at reduced gravity, it will be more difficult to stop than compared to continue or start the motion.
Technical Paper

Pilot Investigation: Nominal Crew Induced Forces in Zero-G

1992-07-01
921155
Vibrational disturbance magnitude and frequency on space-flight missions is often a critical factor regarding mission success. Both materials processing experiments and astronomical investigations have specific microgravity environmental requirements. Recent efforts have been made to quantify the microgravity environment on the Space Shuttle Columbia by measuring gravity levels produced by specific mission events such as Orbiter engine burns, treadmill and ergometer activities, crew sleep periods, rotating chair operations, and body mass measurement operations. However, no measurements have been made of specific, nominal crewmember activities such as translating about the middeck, flight-deck, or in the Spacelab. This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

Molecular Sieve CO2 Removal Systems for Future Missions: Test Results and Alternative Designs

1994-06-01
941396
Reversible adsorption on zeolite molecular sieve material allows selective removal of carbon dioxide (CO2) from spacecraft air without the use of expendables. The four-bed molecular sieve (4BMS) CO2 removal subsystem chosen for use on space station is based on proven Skylab technology and provides continuous CO2 removal from the cabin atmosphere and concentration for further processing downstream or venting overboard. A 4BMS subsystem has also been chosen to remove CO2 from air in the Systems Integration Research Facility (SIRF) at NASA/Johnson Space Center (JSC). After installation in the SIRF in 1992, the subsystem underwent extensive testing in which cycle time, process air flow rate, and process air inlet CO2 composition were varied. In order to obtain performance data required for integration, the subsystem was operated under both nominal and off-nominal conditions. Results of this testing are presented.
Technical Paper

The “Balanced Torque™” Valve, A Paradigm Shift in Valve Actuation

1995-07-01
951456
An advanced technology has been developed by AlliedSignal Aerospace Equipment Systems (AES) of Tempe, Ariz., which is a paradigm shift in butterfly valve actuation and/or modulation. Butterfly valve actuators are typically sized to overcome friction forces within the valve and the aerodynamic forces acting on the butterfly plate. This new technology uses what was previously considered the detrimental aerodynamic forces acting on the plate to reposition the plate for changing the flow through the valve. The goal in using this new technology is to reduce valve actuator volume by 75%, weight by 25%, and cost by 30%. This paper discusses how butterfly plate aerodynamic forces impact valve actuator sizing and how a new butterfly plate mechanism was developed to use these forces for repositioning the plate. The paper will also describe the technical challenges required during the initial development phase of this program.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
X